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Abstract

The dependency on the electric transmission network is increasing at an exponential pace due to the
advent of electric vehicles on the road. As the current power grid is centralized it has been subject to
frequent power shortages, transmission losses, and domestic terrorist attacks. The integration of
microgrids is a viable solution to current and future power grid challenges. Microgrids are smaller
modular power generation units that operate near the end user reducing transmission losses and increasing
power reliability. These microgrids are made up of a local energy storage unit, a power generation source,
and the ability to connect and disconnect to the main grid. A microgrid’s purpose is to provide its local
community with quality electricity at all times. This paper investigates the control and operation of a
proposed microgrid system for the local community of Ward 6 - Washington, DC. An economically
feasible microgrid is designed and a control policy using Q-Learning methods is explored.
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1. Introduction

The current electric power grid is currently under high stress due to aging equipment, reliance on fossil
fuels, and increased demand from electromobility. The current power grid has seen a spike in the number
of power outages and terrorist attacks. Changing weather patterns have placed high stress on centralized
grid systems in certain regions like Texas where a massive power grid failure resulted in the loss of power
for over 4.5 million homes [9]. The nation’s vulnerable electricity infrastructure has also become a target
for domestic terrorism [5]. Growth in electric vehicle ownership will place further stress on an already
failing power grid. To better deal with current and future challenges, decentralization of the power grid is
needed.

A growing solution for distributed power generation is microgrids. Microgrids are able to facilitate
distributed generation and high penetration of renewable energy sources [2][7]. Microgrids have the
advantage of being more reliable because of its self dependence on its own power generation unit and its
ability to directly serve a local demand without passing through a transmission network. Microgrids are
also able to directly connect and disconnect to the main grid at various transmission points. This allows
them to serve local demand even if local power generation fails to meet the demand.

A microgrid is able to be modeled as a complex system - a collection of interacting elements performing a
nonlinear task [1]. A complex system is distributed and self-organized. Any complex system is further
able to be viewed as a System of System (SoS) [7]. A System of System aims to work together to achieve
a common goal by communicating and transmitting tasks [1]. The main purpose of any microgrid is to



work with various types of renewable energy sources and request power from the main grid to reliably
meet the overall local load demand. Rather than using traditional control policies like PID or droop
control, the application of reinforcement learning is investigated. Reinforcement learning allows the agent
to learn the best actions to take given a certain state the microgrid is in. Fuzzy Q-Learning is explored in
order to meet the learning goal of understanding what action to take given the reliability rating of the
system at the current step.

2. Case Study Scope

The Mid-Atlantic region of the United States is predominantly fueled by natural gas and petroleum.
Natural gas prices have lowered over the decade making it a preferred solution compared to the existing
coal plants in the region. Even with lower prices and lower carbon emissions, cities including Washington
D.C. have set goals to achieve fully clean energy by 2032. An increasing number of solar plants have
been set up in the region to diversify the electricity production. However in order to transition specific
Wards or neighborhoods to clean energy in Washington, a reliable control policy must be developed in
order to serve local residential demand.

It has been found that the Mid-Atlantic region suffers from variable weather conditions throughout the
year, presenting a challenge to policy makers in Washington. Despite being a clean and abundantly
available source, wind energy in the region suffers from lack of energy density and intermittency
[3][4][18]. In this region integrating renewable energy can present a risk in providing continuous power
and meeting peak demand. Therefore wind power systems have been omitted from the study. In this paper
only the integration of solar power is explored. It is assumed that the 100 MW battery used has 100%
efficiency.

The cost of electricity is highest in August. Therefore the study has been scoped to assess the system in
the month of August only. The residents of Washington consume an average of 10,5011.17 MWh during
the month of August [14]. Ward 6 has been calculated to consume an average of 78.74 MWh, based on its
resident proportion, in August. The city of Annapolis, Maryland has been chosen to represent the main
grid in how it buys and sells energy to Washington-Ward 6. Local solar elevation data and cloud cover
data has been analyzed to generate solar power generation data for Ward 6.

2.1. Solar Generation Equations

Solar panels use solar radiation to generate electricity, transforming photons that hit the photovoltaic
panels into DC current. When the photons hit the panel they are absorbed by the panel’s semiconducting
silicon material. The movement of the electrons generates the DC current. Solar panels rely on solar
elevation, cloud cover, topography, and solar irradiance.

For this paper the solar panel chosen is the Vertex 670W+ Module. The area of the panel is A = 2.9106
from 66 210 mm silicon wafers. The solar panel yield is rated at 21.6%. The losses are estimated to be
0.0651 based on DC to AC loss and random loss [17].

The power generated by the solar panel is proportional to the total area:

𝐸 =  𝐴𝑦𝐻𝑟

where A is the area of the solar panel, y is the solar panel yield, H is the solar radiation, and r is the
performance ratio. The solar radiation changes throughout the year as it is dependent on solar elevation
and cloud cover. The solar radiation for a given hour is:
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August over 5 years from 2018 to 2022 [9].

2.2. Main Grid Pricing Strategy

The main grid in this paper is represented as an unlimited source of energy to the local grid. The main
grid acts as a bidder and provider. It provides a bidding price to buy excess energy from the local grid.
The bidding price is represented by the residential cost of electricity per hour for the city of Annapolis.
When acting as a provider the request price is set dynamically depending on the local demand.

The real price distribution for DC residents was used [14]. The following strategy to calculate dynamic
request price was used:
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Given the distribution, it was determined what the mean and standard deviation is. The current local
demand is mapped to a Z score for local demand distribution. The Z score for local demand is mapped to
the raw price using the local request price parameters.

2.3. Determining the Number of Panels

Using the local energy demand data and the calculated local solar power generation data, the number of
panels for each hour was determined by the simple equation:

𝑁𝑢𝑚
𝑝𝑎𝑛𝑒𝑙𝑠

 =  𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑒𝑚𝑎𝑛𝑑
𝑆𝑜𝑙𝑎𝑟 𝑃𝑜𝑤𝑒𝑟  ∀ ℎ𝑜𝑢𝑟𝑠

The number of panels varied dramatically depending on the solar output. In order to choose a reliable
number of panels, the Z score of 1.96 mapping to a confidence level of 95% was chosen. The distribution
parameters across the matrix Numpanels were generated. The final Numpanels was chosen to be mapped to the
Z score 1.96.

2.4. Data Handling

All data used throughout this paper has been partitioned by the hour over 31 days of August for 5 years
such that the appears like this where n = 155 days:



3. Reinforcement Learning

The objective of reinforcement learning is to find a policy - a mapping from states to actions - that
maximizes a reward. Learning is essentially a trial and error process where an agent learns through
exploration and exploitation by receiving feedback from the system. The learning agent reinforces itself
through successes and failures. Actions that are good when performed in a given state are rewarded, while
actions that are bad are punished.

3.1. Q-Learning

Q learning is a type of model-free reinforcement learning, where the agent does not need to know all the
details about the model. It is like a black-box type of reinforcement learning. Q-learning learns through
the action-value function Q that maps state-action pairs to returns. An agent tries an action at a state and
evaluates its reward immediately. Q-learning is less memory intensive as it maintains only one
state-action pair given it is one-step Q-learning. The number of state-action pairs correspond to the
number of N-steps in Q-learning.

Fig 1: Q-Learning Algorithm [13]

3.2. Fuzzy Reasoning Logic

In classical set theory, elements belong to a crisp set in a binary manner - yes or no. In fuzzy set theory, an
element belongs to a set up to a degree. A degree of membership is associated with an element. Fuzzy
logic allows for ambiguity by allowing the usage of fuzzy if then rules. This fuzzy rule building allows for
relations among fuzzy variables to be represented using linguistic terms like very or somewhat.

3.2.1. Fuzzy Q-Learning

This paper used fuzzy Q-learning to generate a state space. The crisp set of inputs or observations are
fuzzified. The fuzzified observations are then mapped to a fuzzy state using a fuzzy inference engine. The
degree of membership to each linguistic value determines the strength of a certain rule in an inference
engine. An inference engine is a set of if then rules. The degree of membership of each if variable
determines the strength of the rule which in turn defines the degree of the output variable. As in, the
strength of each rule determines the degree to which the agent is in a state [6].



4. Modeling System Interactions

The local microgrid system of Ward 6 is powered with solar energy. The goal of the system is to serve the
local demand reliably through generated power, stored power, and requested power. For simplicity there is
no limit to how much power can be requested from the main grid. However to represent real power grid
interactions, there is a cost when requesting energy transfers from another grid (main-grid). When there is
a shortage of power the Microgrid takes action to minimize that shortage. When there is an excess of
power the Microgrid takes action to maximize the profit on the excess without hurting the system in the
future.

In this environment, the interactions of a Microgrid with its local demand is infinite. However an infinite
horizon is computationally intensive. This system has no reasonable termination state as local energy
demand must always be met. An episode has been defined to be 24 hours. The start and end of the episode
coincide with the lowest energy demand.

A step in this environment is a time step of an hour. The step changes controlled variables that the system
has control over. The agent does not observe variables that are uncontrolled like the main grid parameters.
The Microgrid is responsible for managing its own shortages and excess. Through managing its shortage
and excess it can measure its own reliability through fuzzy logic systems. A highly reliable system means
the Microgrid is self-sufficient. A low reliable system indicates the Microgrid is dependent on the main
grid for support.

Fig 2: Model of System in Case Study

4.1. Observation

These observations are observed by the learning agent when interacting with the environment of the
Microgrid. Resets to the environment start the agent at random days at hour 0.

Observation Notes

Current Energy Demand (MWh) -

Current Energy Supply (MWh) -

Battery Supply (MWh) -

Total Supply (MWh) Current Energy Supply + Battery Supply

Current Delta (MWh) Total Supply - Current Demand



Main Grid Request Price ($) Dynamic based on necessity of local demand.
Larger the delta, larger the cost to request.

Main Grid Bid Price ($) Constant $0.14/kWh

Storage Price ($) Constant $0.05/kWh

Current Econ Return $Profit

4.1.1. Fuzzy State

In order to best preserve information about the state of the system given the observations, the state the
learning agent learns is a 2D state.The state space represents the degree of autonomy of a system. The
state is defined as:

S = [dependence degree, independence degree]

The dependence degree should measure how dependent the Microgrid is on the main grid. The
independence degree should measure how independent the Microgrid is. A high degree of independence
indicates high reliability if the microgrid system should need to disconnect from the main grid.

The fuzzy inference engine uses 8 rules. Technically fuzzy systems increase the complexity by increasing
the number of fuzzy variables. The fuzzy system also has to go through the process of defuzzification to
reduce the dimensionality size. There are various methods in reducing the complexity depending on how
the overall fuzzy set for each output membership function is treated. In this paper we operate upon each
fuzzy rule essentially approximating the crisp output. For each output linguistic variable, the probabilistic
t-conorm operates on all of the individual strengths for all the corresponding rules. This iterative
probabilistic t-conorm operation reduces the number of variables from 8 to 2.

Algorithm: Probabilistic T-conorm
x = [x1, x2, x3, x4]

idx = 0
for i in range(0, 4):

a = x[i]
for j in range(i + 1, 4):

b = x[j]
Y[0, idx] = a + b - (a * b)
idx = idx + 1

4.1.1.1. Rules

The final fuzzy output state of s = [dependence degree, independence degree], is generated through a
fuzzy inference engine. The rules require the crisp inputs of the observations be fuzzified before inputting
into the inference engine. The rules are as follows:

● Rule 1 if current_delta is not_reliable and battery_usage is low and current_economic_profit is
low, then Z is not independent

● Rule 2 if current_delta is not_reliable and battery_usage is low and current_economic_profit is
high, then Z is not independent



● Rule 3 if current_delta is not_reliable and battery_usage is high and current_economic_profit is
low, then Z is not independent

● Rule 4 if current_delta is not_reliable and babattery_usagett is high and current_economic_profit
is high, then Z is independent

● Rule 5 if current_delta is reliable and battery_usage is high and current_economic_profit is high,
then Z is independent

● Rule 6 if current_delta is reliable and battery_usage is low and current_economic_profit is high,
then Z is independent

● Rule 7 if current_delta is reliable and battery_usage is high and current_economic_profit is low,
then Z is independent

● Rule 8 if current_delta is reliable and battery_usage is low and current_economic_profit is low,
then Z is not independent

4.1.1.2. Membership Functions

The membership functions are used to calculate the degree of belonging or membership a value has to a
set. There is a degree of membership to how “reliable” or “unreliable” a value is.

4.1.1.2.1. Output Membership Functions

The output membership function is generated by taking the T-norm or in this case the algebraic product of
the degree of all three fuzzy inputs. That value is then compared to the value of the whole output
membership function. The T-conorm or maximum value is taken. This value indicates the strength of
autonomy of the system. Below is an example of equations used to determine the rule strength:

weight1 = not_reliable * low_batt * low_profit
rule1 = np.max(np.multiply(weight1, z_not_indepedent))

The output membership functions are defined below:

𝑦 =  1

1 + 𝑒
𝑎

𝑍 − 𝑐

For the degree of dependence, the parameter values are a = 30, c = 30. For the degree of independence,
the parameter values are a = 30, c = 70.

4.1.1.2.2. Input Membership Functions

The input membership function is direct and is applied to only one crisp input. The crisp inputs of
current_delta, battery_supply, and current_econ_return are mapped to a fuzzy input represented by a set.
The same equation for a two sided gaussian is used for all three linguistic variables.
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● if x < c2 and x > c1
○ y = 1

● else
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The variable current_delta is evaluated to analyze what the natural reliability of the system is. As in what
the reliability of the system is given only solar power generation. There are 2 linguistic values for this
variable: reliable or not reliable. For the degree of “not reliable”, the parameter values are c1 = 0, c2 =
30, sig1 = 20, sig2 = 20. For the degree of “reliable”, the parameter values are c1 = 65, c2 = 100, sig1 =
20, sig2 = 20.

The variable battery_supply is evaluated to analyze how much the battery is used. There are 2 linguistic
values for this variable: used or not used. For the degree of “used”, the parameter values are c1 = 75, c2 =
100, sig1 = 25, sig2 = 25. For the degree of “not used”, the parameter values are c1 = 0, c2 = 25, sig1 =
25, sig2 = 25.

The variable current_econ_return is evaluated to analyze how profitable the system is. There are 2
linguistic values for this variable: profitable or not profitable. As profit can be extremely negative or
positive depending on the action of the agent, the values have been limited such that any value below
-10000 is limited to -10000. Any value above 15000 is limited to 15000. For the degree of “profitable”,
the parameter values are c1 = -10000, c2 = 35, sig1 = 150, sig2 = 150. For the degree of “not
profitable”, the parameter values are c1 = 40, c2 = 15000, sig1 = 150, sig2 = 150.

4.2. Actions

By default the agent always serves the local demand immediately with the current energy generation and
battery supply, this allows for the system to maintain a level of virtual inertia control. This is critical to
energy generation systems that are not motor driven. Once the current energy demand is met there is a
delta. The actions that manage the delta are of interest to this paper. The actions in this environment are:

● Action 0: Sell (delta) to Main
● Action 1: Store (delta) to Battery
● Action 2: Buy (delta) from Main

4.3. Reward

The agent receives a reward for certain actions taken in a given state. The default reward at every step is
+10. The agent always receives a reward for serving the local demand. The reward of interest is
dependent on delta. The reward shaping is as such:

● Reward 0: Main Grid Request Price * Delta → i.e. selling during a shortage is very bad
● Reward 1: Storage Price * Delta → storing during a shortage isn’t rewarded
● Reward 2: (-1) * Main Grid Bid Price * Delta → negation taken so that the agent is rewarded for

requesting help during a shortage. However it should not request if in a state of excess

5. Simulation

This section presents the simulation of the local microgrid for Ward 6. The figure below shows the energy
demand trend for the Mid-Atlantic region, which represents the DC residential demand. The system is
grid connected with battery storage. The goal is for the microgrid to take the best action given the state of
autonomy the system is in. The state of autonomy has been represented by the vector s = [dependence,



independence]. The system’s default action is to always serve the local demand through its available solar
power and battery storage. The simulation explores how the agent learns to manage the shortage or excess
of the microgrid system after serving the local demand at time t.

Fig 3: MIDA Electricity Demand Overview of August 2021 [15]

The simulation setup treats one episode as 24 hours. The environment resets at a random day at hour 0. As
the experiment is limited to the month of August, each hour of the day is treated as a random process
using the data from each hour of all days. The experiment is run for a various number of episodes in sets
of 155 to ensure that all the data has been explored at least once.

5.1. Reward Shaping

Reward shaping was explored to investigate the effects of different scales on the agent’s ability to learn
effectively. The original intention behind the reward was that the agent would be heavily penalized for
selling during a shortage and purchasing during an excess of power. For the following experiment run the
agent completed 10 sets of 155 episodes. Below is the raw average reward without any reward shaping.

Fig 4: Average Reward for Raw Reward without Shaping - 10 sets



Fig 5: Average Reward for Raw Reward without Shaping - 15 sets

To minimize the spikes in the returned reward, reward shaping was explored. The reward was scaled so
that the absolute maximum value of a reward would be 10000. If the absolute value is above 10000, the
factor is calculated by taking the current reward value divided by 10000. The value is then scaled down
by the factor value . The average reward is shown below. Notice that scaling the value had a negative
impact on the learning, where the agent failed to maximize the reward and seems to have learned a bad
policy.

Fig 6: Average Reward for Scaled Reward Shaping limit abs(10000) - 10 sets

The reward was scaled so that the absolute maximum value of a reward would be 100,000. If the absolute
value is above 100,000, the factor is calculated by taking the current reward value divided by 100,000.
The value is then scaled down by the factor value . The average reward is shown below. Notice that
scaling here seems to be successful. The spikes in the rewards have been reduced and the policy seems to
have converged successfully on a stable reward.



Fig 7: Average Reward for Scaled Reward Shaping limit abs(100,000) - 15 sets

6. Conclusion

This paper presented the modeling, simulation, and control of a viable microgrid for Ward 6 of
Washington D.C. This microgrid was treated as a complex system or System of System where each
subsystem acted independently of each other but still interacted. The system was made up of solar power
generating units, a battery storage, load demand, and a connected stable main grid. A fuzzy Q-Learning
algorithm was explored to examine if an optimal policy could be developed to control the local grid
interactions when faced with an energy shortage or excess. The simulation was run directly on real data
collected for Washington. The results displayed inconsistencies with the learning when using raw reward.
Reward shaping through scaling failed on the first simulation attempts as the limit was too low. Once the
limit was increased to 100,000 the policy was able to converge upon a reward. It is assumed that an
optimal or good enough policy has been found through fuzzy Q-learning for the system presented in this
paper. Future work includes additional system components simulating the interaction with another
dynamic live microgrid.
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